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We consider the asymmetric random average process (ARAP) with continuous
mass variables and parallel discrete time dynamics studied recently by Krug/
Garcia and Rajesh/Majumdar [both J. Statist. Phys. 99 (2000)]. The model
is defined by an arbitrary state-independent fraction density function f(r) with
support on the unit interval. We examine the exactness of mean-field steady-
state mass distributions in dependence of f and identify as a conjecture based on
high order calculations the class M of density functions yielding product
measure solutions. Additionally the exact form of the associated mass distribu-
tions P(m) is derived. Using these results we show examplary the exactness of
the mean-field ansatz for monomial fraction densities f(r)=(n−1) rn−2 with
n \ 2. For verification we calculate the mass distributions P(m) explicitly and
prove directly that product measure holds. Furthermore we show that even in
cases where the steady state is not given by a product measure very accurate
approximants can be found in the classM.

KEY WORDS: Non-equilibrium physics; stochastic systems; interacting particle
system; random average process; q model; invariant product measure; discrete
time dynamics; exact solution.

1. INTRODUCTION

Interacting particle systems far from equilibrium represent due to their
wide applications in physics and other related topics like traffic flow
modeling (1) or force propagation in granular media (5) a popular theoretical
research field. (8) In this paper we focus on a model studied recently by
Krug and Garcia (4) and Rajesh and Majumdar (7) that is closely related to the



q model introduced by Coppersmith et al. (3) It describes the movement of
particles on the real line according to a given probability distribution
depending on the distance of two particles. This system is equivalent to a
stick model where the height of the sticks represents the particle gap. (4, 7)

Below we present a brief description for completeness and demarcation of
our framework.

The asymmetric random average process (ARAP) is defined on a one-
dimensional periodic lattice with L sites. Each site i carries a non-negative
continuous mass variable mi. In every time step tQ t+1 for each site a
random number ri is generated from a time- and site-independent probability
distribution f defined on [0, 1]. The fraction ri determines the amount of
mass rimi transported from site i to site i+1 (asymmetric shift).

In the following we concentrate on the infinite system in the thermo-
dynamic limit, i.e., LQ. andM=;i mi Q. with finite constant density
r=M

L . Furthermore we examine only time independent steady state dynamics.
In case of a uniform fraction density f(r)=1 mass distributions and

moments have been calculated in mean-field approximation for different
types of dynamics. (4, 6, 7) Although these analytical results show excellent
agreement with numerical simulations, one can prove that for random
sequential update a product measure ansatz fails. (7) For the fully parallel
update, however, one can adopt the result of ref. 3 where the exactness of
the mean-field approach is proven in the context of force fluctuations in
bead packs described by the q model. (3, 2)

In this paper we like to reinforce investigations by considering arbi-
trary state independent fraction density functions f=f(r) and focussing on
the fully parallel update only. Such density functions are relevant for prac-
tical applications, e.g., as approximation for the ARAP with a finite mass
cut-off (11) or for describing suitable bead pack problems.

In Section 2 a functional equation acting on the Laplace-space of the
single-site mass distributions P(m) is derived. Product measure holds if a
mean-field ansatz is a solution of this condition.

In Section 3 we determine the set M of all fraction probability densi-
ties f(r) yielding product measure states. This result represents a conjecture
based on exact high order calculations. Now statements about the exact-
ness of mean-field are possible without solving the master equation. We
also derive the corresponding mass distributions P(m).

As an example the ARAP with monomial f-function is studied
(Section 4). We calculate P(m) and prove the exactness of mean-field by
using the explicit form of P(m) on the one hand and the criterion of the
last section on the other hand. Due to the fact that the n dimensional q
model with uniform distributed q’s leads to the same mass distribution (3) its
relationship with the ARAP is discussed, too.
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In Section 5 we demonstrate that the results obtained in the previous
sections can be used to obtain very accurate approximations for the mass
distributions of ARAPs which do not lead to product measures.

In Section 6 we conclude with a summary and give a brief outlook for
further work.

2. A FUNCTIONAL EQUATION OF EXACT MEAN-FIELD SOLUTIONS

In this section we derive a functional equation (see Eq. (7) below) for
determining and testing mean-field solutions.

The fundamental element of all upcoming considerations is the master
equation. For the single site mass distribution P(m) in the stationary state
it reads (7)

P(m −2)=F
.

0
dm1 F

.

0
dm2 P(m1, m2) F

1

0
dr1 F

1

0
dr2 f(r1) f(r2)

×d(m −2−[r1m1+(1−r2) m2]). (1)

The d-function ensures mass conservation. We have assumed translational
invariance so that the distribution is site-independent.

By the mean-field ansatz P(m1, m2,...)=<i P(mi) Eq. (1) determines
the single site distribution P(m). The resulting product measure is exact if
the mean-field ansatz holds for all joint probabilities in the stationary state,
too, i.e., P(m) has to satisfy

D
k

i=2
P(m −i)=3D

k

i=1
F
.

0
dmi P(mi) F

1

0
dri f(ri)4

×D
k

i=2
d(m −i−[ri−1mi−1+(1−ri) mi]) (2)

for all k ¥N\ 2. For k=2 this equation reduces to (1). This appears to be an
infinite set of conditions, but Laplace transforming P(m1, m2, ...) reduces (2)
to just one functional equation. By introducing the k-dimensional Laplace-
transform

Q(s1,..., sk) — F
.

0
dkm P(m) e−(m, s), (3)

where (m, s)=;k
i=1 misi, and using the map

FQ(s, s̃) — F
1

0
dr f(r) Q((1−r) s+rs̃) (4)
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Eq. (2) reads in Laplace space

D
k

i=1
Q(si)=FQ(0, s1) ·D

k−1

i=1
FQ(si, si+1) ·FQ(sk, 0) (5)

for k ¥N.
By a straightforward proof we now show that the conditions for k ] 2

are redundant. The k=1-equation

Q(s)=FQ(s, 0) ·FQ(0, s) (6)

is used to determine Q. We rewrite the k=2-criterion using (6) and obtain

FQ(s1, s2)=FQ(s1, 0) ·FQ(0, s2). (7)

Applying (6) and (7) proves the validity of (5) for all k \ 3 and using the
identity Q(s)=FQ(s, s) Eq. (6) becomes a special case of (7). So (7) is the
only necessary equation to determine a mean-field solution (s1=s2) and
check its accuracy (s1 ] s2).

3. EXACT MEAN-FIELD SOLUTIONS

In this section we derive the set of density functions f(r) that result
in product measure steady states. This yields a more useful criterion for
determining the exactness of a mean-field solution without calculating and
verifying Q(s) by condition (7). In addition we derive the mass distribution
P(m).

We start by proving that Eq. (6) has always a unique solution in the
space of functions that are analytical in the origin. Intuitively one supposes
this feature because the mass moments

mn — OmnPP(m)=F
.

0
dm mnP(m) (8)

are (formally) generated by mn=(−1)n Q (n)(0). But a priori we do not
know if all derivatives Q (n) of the moment function Q(s) exist or ensure
convergence. The moments m0=1 and m1=r are determined by the nor-
malization and the density r, respectively.

We first represent the moment function as a (formal) power series, i.e.,
Q(s)=;n ansn. The coefficients an are related to the moments (8) by an=
(−1)n mnn! and thus we have a0=1 and a1=−r. The remaining coefficients
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are determined with help of a recurrence relation obtained by inserting the
series representation into (6):

an=
1

1−mn, 0−m0, n
C
n−1

k=1
mk, 0m0, n−kakan−k (-n \ 2). (9)

Here mn, m are generalized moments of the fraction density f defined by

mn, m — Orn(1−r)mPf(r)=F
1

0
dr f(r) rn(1−r)m. (10)

We assume mn, m > 0 in the following which is equivalent to f(r) ] 0 for
r ¥ (0, 1). mn, m=0 does not occur for continuous distributions, but e.g., for
f(r)=pd(r)+(1−p) d(1−r). This ARAP is trivial for p=0 or p=1 and
not solvable under mean-field assumptions for 0 < p < 1. From

1−mn, 0−m0, n =
(10)

C
n−1

k=1

1n
k
2 mk, n−k > 0 (-n \ 2) (11)

we conclude that all an are well-defined and the solution of (6) is unique.
By the formula of Cauchy–Hadamard we then show that Q is holomorphic
in s=0: We start by proving the lemma

|an | [ Dn−1cnrn (-n \ 1) (12)

with D — 1
1−m2, 0 −m0, 2

and the density r. Here {cn}n ¥N are the Catalan num-
bers (10) fulfilling the equations

c1=1 and cn=C
n−1

k=1
ckcn−k=

1
n
12(n−1)

n−1
2 (-n \ 2). (13)

Inserting (12) into (9) using (13) and the fact that mn, m > mn+k1, m+k2 for all
ki ¥N shows inductively the validity of the lemma (12). From limnQ. ǹ cn
=4 we conclude that the series expansion Q(s)=;n ansn has a positive
radius of convergence.

After proving that mean-field solutions are always representable as
power series we now try to express the exact solutions in terms of the
density function f. Inserting Q(s)=;n ansn into (7) yields an infinite set of
conditions

1n
k
2 mk, n−kan=mk, 0m0, n−kakan−k (-n ¥N0, -k ¥ {0,..., n}). (14)
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In the following we refer to a special equation of (14) as (n, k)-condition or
equation of order n. Summing over k=1,..., n−1 in (14) yields condition
(9). This shows again that (7) includes formula (6) and implies convergence
of Q(s).

Now we are confronted with the problem that an is determined by
n+1 equations. Since the (n, 0)- and (n, n)-conditions match identities
there are effectively n−1 equations to be fulfilled for n \ 2. Thus for n \ 3
the occurence of inconsistencies is possible and for arbitrary f or moments
mn, m we see by explicit calculation contradictions in order n=3 already. Is
it possible to find a set of moments {mn, m} such that (14) is satisfied for all
(n, k)?

Assuming that all (n, k)-conditions yield the same an we see from (14)
that the function

f(n, k) —
mk, 0m0, n−kakan−k

1n
k
2 mk, n−k

. (15)

is independent of k. Therefore the n−2 consistency equations

f(n, 1)=f(n, 2)=· · ·=f(n, n−1) — an (16)

have to be satisfied. The definition (10) implies that mn, m can be expressed
by mj, 0 only:

mn, m=C
m

j=0

1m
j
2 (−1) j mn+j with mj — mj, 0. (17)

Together with (14) it follows inductively that an=an(m0,..., mn). This leads
to a successive constructive approach in n: We try to find a mn (depending
on m0,..., mn−1) that solves all conditions (16) of order n starting with n=3
and repeat this for all upcoming orders n=4, 5,... .

The n−2 equations (16) are linear in mn. This ensures uniqueness of a
possible solution. For arbitrary k, k̃=1,..., n−1 with k ] k̃ we obtain

mn=

1n
k
2 hn, k gn, k̃−1

n
k̃
2 hn, k̃ gn, k

1n
k̃
2 (−1)n− k̃ gn, k−1

n
k
2 (−1)n−k gn, k̃

. (18)

Here gn, k — mk, 0m0, n−kakan−k and hn, k —;n−k−1
j=0 (n−kj )(−1)

j mk+j only depend
on m1,..., mn−1. Thus (18) gives us the desired recursion relation to determine
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all moments mn. However, we have to check whether the r.h.s. of (18) is
independent of k and k̃. We have done this up to order n=10 by compu-
ter algebra and conjecture the validity for all n. Our results furthermore
lead us to conjecture the following form of the solution of the density
moments:

mn=D
n−1

l=0

l+l1
l+l2

=
C(n+l1)
C(l1)

C(l2)
C(n+l2)

(19)

with

l1=m1
m1−m2
m2−m

2
1

, l2=
m1−m2
m2−m

2
1

, (20)

which again has been checked up to n=10. Note that m1 and m2 are free
parameters that only have to be choosen with respect to the general
moment properties

1 > m1 > m2 \ m
2
1. (21)

The special case m1=m
2
2 yields mn=m

n
1 representing f(r)=d(r−m1) which

leads to Q(s)=exp(−rs) and thus to the mass distribution P(m)=
d(m−r). So we assume m2 > m

2
1 in the following. Under these restrictions

mn \ 3 is pole-free and satisfies 0 < mn+1 < mn as demanded.
Equations (19)–(21) define the set M of all fraction densities f(r)

yielding product measure steady-state distributions. So Eqs. (19) and (20)
represent a powerful criterion for determining the exactness of a mean-field
ansatz: We only have to calculate the moments mn of the fraction density
(if they are not already given) and check consistency with (19) and (20)—
without even calculating the mean-field mass distribution or its Laplace-
transform!

Note that the parametrization ofM in terms of m1 and m2 is arbitrary
and a consequence of our construction—other parametrizations are pos-
sible. For symmetric densities f(r)=f(1−r) the space M reduces to one
dimension because m1=

1
2 is fixed.

After determining the class M of fraction densities leading to a
product measure we now like to calculate the single site mass distribution
P(m) for these f ¥M. From the (n+1, n)-condition (14) we derive the
recurrence relation

l2(n+1) an+1+r(n+l2) an=0 (22)
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that is valid for all n ¥N0. Equation (22) corresponds to a first order dif-
ferential equation for the moment function Q(s)=;n ansn:

(l2+rs) Q −(s)+l2rQ(s)=0. (23)

Using the boundary condition Q(0)=1 we obtain

Q(s)=
1

11+r
l2

s2
l2

(24)

or, by calculating the inverse Laplace-transform,

P(m)=
ll22
C(l2)

1
r
1m
r
2l2 −1 e−l2 mr . (25)

In contrast to mn depending on both l1 and l2—see Eq. (19)—P(m) is a
function of l2 only. So ARAPs with l2 fixed and l1 arbitrary have identical
mass distributions (25).

4. EXPLICIT SOLUTION FOR MONOMIAL DENSITY FUNCTION f(r)

In this section we derive the solution of the ARAPwith density function

fn(r)=(n−1) rn−2 (-n ¥N \ 2) (26)

in a closed form (n−1 is the normalization constant) and prove the exactness
of the product measure <k P(mk) both explicitly and using the criterion
(19)–(20). Additionally a brief comparison between ARAP and the qmodel is
presented.

We start by constructing the analytic solution of the functional equa-
tion (6) explicitly. For n=2, where fn reduces to a constant distribution,
we refer to refs. 3, 4, and 7 and find

Q2(s)=
1

11+r
2
s2
2
. (27)

To solve the n=3-problem we generalize the method used in refs. 3, 4,
and 7. Defining the functions

V(s)=F
1

0
dr Q3(rs) and W(s)=F

1

0
dr rQ3(rs) (28)
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the functional equation (6) transforms into

Q3(s)=4W(s)(V(s)−W(s)) . (29)

From (28) we derive

sVŒ(s)+V(s)=Q3(s)=sWŒ(s)+2W(s) (30)

which implies the following relation between V andW:

V(s)=W(s)+
1
s
FW(s) ds. (31)

Defining the antiderivative f(s) — >W(s) ds and inserting (31) and (30) into
(29) yields the nonlinear differential equation

s2fœ(s)+2sfŒ(s)−4fŒ(s) f(s)=0 (32)

with boundary conditions fŒ(0)=1
2 and fœ(0)=−13 r. This results in f(s)=

s
2 (1+

r
3 s)

−1, e.g., solved by power series ansatz, and we get

Q3(s)=
1

11+r
3
s2
3
. (33)

The results (27) and (33) suggest the assumption

Qn(s)=
1

11+r
n
s2
n
, (34)

for general n. Qn fulfills the initial conditions Qn(0)=1 and Q −n(0)=−r.
By a straightforward induction in n (using partial integration) we are able
to prove

FQn (s, 0)=
1

1+
r

n
s

and FQn (0, s)=
1

11+r
n
s2
n−1

(35)

and see with (34) that (6) is valid.
The next step is to verify the functional equation (7). This is done

again straightforwardly by induction in n. So (34) represents the exact
solution of the ARAP with fraction density (26).
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Now we rederive (34) using the mean-field criterion (19)–(20). Cal-
culating the moments of fn exactly is an easy task and yields

mk=
n−1

n−1+k
. (36)

Especially we have m1=
n−1
n and m2=

n−1
n+1 and, using (20), we obtain l1=

n−1 and l2=n.
The exact form (36) of the moments is reproduced by taking into

account (19). Thus the monomial density functions fn are elements of M.
Using l2=n shows the equivalence of (24) and (34) after all.

Additionally this example confirms the validity of the conjecture
(19)–(20).

For completeness we also give the explicit form of the single-site mass
distribution for the monomial density functions (26):

Pn(m)=
nn

(n−1)!
mn−1

rn
e−n

m
r. (37)

Finally we like to mention that Qn also satisfies the relation

Qn(s)=(FQn (0, s))
n=5F 1

0
dr f(r) Qn(rs)6

n

. (38)

This functional equation represents the master equation of the n ancestor q
model with uniform distributed q’s and was explicitly solved in ref. 3.
Because of the formal difference of the underlying equations (6) and (38)
the coincidence of the corresponding solution (34) is remarkable. Otherwise
this result is pointing to a deeper relationship between n dimensional q
model and ARAP.

As already noticed in ref. 4 the two ancestors q model (n=2) corre-
sponds to an ARAP with symmetric density function f(r)=f(1−r).
Coppersmith et al. (3) identified a set of mean-field solutions generated by
monomial distributions, i.e., f(qij)=qm, yielding f(r)=(2m+1)!

(m!)2 rm(1−r)m

and it is easy to see that these densities are also elements ofM.

5. APPROXIMATIVE MASS DISTRIBUTIONS FOR ARBITRARY

DENSITY FUNCTIONS

As an application of our results, we construct approximative mass
distributions for arbitrary density functions f. This is done by calculating
the parameter l2=l2(f) with the help of (20) (using the exact moments
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m1 and m2 of f) and taking the corresponding mean-field solution (25) as an
approximation. To illustrate this method and estimate its quality we con-
sider two examples.

Our discussion starts with density functions being convex combina-
tions of elements ofM. We restrict here to the special case

fc=(1−c) f2+cf3, c ¥ [0, 1] (39)

with the monomial density functions fn defined in (26). This convex
combination of probability densities conserves their basic properties like
normalization or positivity. Calculating the first and second moment
of fc yields l2=

6
3−c2 . Inserting this result into (25) generates c-dependent

approximations Pc.
Comparing the distribution Pc with numerical data shows an excellent

agreement between approximation and the results of Monte Carlo simula-
tions for all values of c (see Fig. 1). Only for small masses m systematical
differences occur.

Furthermore one can prove that fc ¨M for all 0 < c < 1. This is most
easily seen by comparing the third moment m3 of (39) with the corresponding
mean-field expression (19). So the excellent agreement of the data match is
far from trivial. Nevertheless fc is an interpolation between exact mean-
field solutions and may inherit some of their properties.

Our second example represents the simplest version of an ARAPwith cut-
off. It is based on the model with uniform fraction density, but enhanced by

Fig. 1. Analytical (—) and numerical (j,n) mass distributions P(m) of the convex
combined ARAP (c=0.5, left diagram) and the truncated ARAP (r0=0.5 (j) and r0=0.1
(n), right diagram). The analytical curves are appropriate approximants taken from the mean-
field classM. The numerical results are obtained by Monte-Carlo simulations of systems with
size L=1000 and random initial condition. After 104 steps the distribution was measured for
107 timesteps. A log-log plot is used to exhibit the deviations for small masses m which can
hardly be seen in a conventional representation.
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an additional parameter r0 ¥ [0, 1]. The cut-off r0 controls the movement
in the following way: A stick fragment rimi is only transferred if ri [ r0.
The corresponding density function takes the form:

fr0 (r)=(1−r0) d(r)+H(r0−r) (40)

where H(r) is the Heaviside step-function. A detailed discussion of several
truncated ARAPs can be found in ref. 11.

If r0=1 we obtain the free ARAP which is exactly solvable by
product measure ansatz. (3) For 0 < r0 < 1 one can show that fr0 ¨M. In the
case r0=0, where no motion is possible, the mean-field condition (7)
reduces to an identity—so any distribution represents an exact mean-field
solution. In this sense (40) interpolates between ARAPs with product
measure steady state as in the first example, but the construction is not a
convex combination.

The approximants Pr0 are calculated as described above and match the
Monte-Carlo simulation data perfectly again except deviations for small m
(see Fig. 1).

6. CONCLUSIONS

We have studied the asymmetric random average process with arbi-
trary fraction density f. Based on the analysis of the functional equation
(7) we have identified all ARAPs where the stationary mass distribution
P(m) is given by a product measure. The corresponding f-functions form
the mean-field classM. They are given by their moments mn=OrnPf which
depend on two free parameters, l1 and l2, related to the first moments m1
and m2 (20). These can be chosen arbitrarily subject only to the general
conditions (21). For the product measure ARAPs also the stationary mass
distribution P(m) can be calculated explicitly (25). Surprisingly it depends
only on the parameter l2.

The presented approach is rigorous except for a formal proof of (19)
which we have conjectured on the basis of computer algebra calculations.

As shown our results can be used to obtain accurate approximations
for ARAPs which do not lead to exact product measures: instead of cal-
culating mean-field approximations by (6) one can use the corresponding
distribution (25) with appropriately determined l2=l2(f) as a first guess.
A detailed discussion of M could explain why this method often matches
perfectly with numerical simulation data. We suppose that arbitrary choosen
f lie ‘‘near’’ to the subspaceMwith respect to a suitable chosen norm.

We like to mention that our approach can easily be adopted to the
ARAP with random sequential update. Since a mean-field ansatz breaks
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down even for the simple model with uniform f-function (7) we have not
done calculations for this case. Nevertheless the existence of product
measure ARAPs with continuous time dynamics is also possible. Further-
more one could try to transfer our calculations to the q model to supple-
ment the findings of ref. 3. It would be interesting to use our results for the
calculation of other properties, too, e.g., the tracer diffusion coefficient. (9)

The calculation of exact solutions of ARAPs with arbitrary f(r) seems
to be the final step of work. Vanishing of the 2-site-correlation functions (4)

and the excellent quality of mean-field approximations have already
pointed to a distribution that deviates only slightly from product measure
form. Supplementary our work gives by Eq. (25) a rough shape of the
general solutions.

Finally it would be interesting to extend our considerations to state
dependent density functions, i.e., f=f(r, {mi}), and especially to local prob-
abilities f(r, m). These models are for example interesting for truncated
asymmetric random average processes.(11)
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